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Abstract. Recent advances in land data assimilation have yielded variational smoother

techniques designed to solve the surface energy balance based on remote observations of
surface radiometric temperature. These approaches have a number of potential advantages
over existing diagnostic models, including the ability to make energy flux predictions between
observation times and reduced requirements for ancillary parameter estimation. Here, the

performance of a recently developed variational smoother approach is examined in detail over
a range of vegetative and hydrological conditions in the southern U.S.A. during the middle
part of the growing season. Smoother results are compared with flux tower observations and

energy balance predictions obtained from the two-source energy balance model (TSM). The
variational approach demonstrates promise for flux retrievals at dry and lightly vegetated
sites. However, results suggest that the simultaneous retrieval of both evaporative fraction and

turbulent transfer coefficients by the variational approach will be difficult for wet and/or
heavily vegetated land surfaces. Additional land surface information (e.g. leaf area index (LAI)
or the rough specification of evaporative fraction bounds) will be required to ensure robust
predictions under such conditions. The single-source nature of the variational approach also

hampers the physical interpretation of turbulent transfer coefficient retrievals. Intercompari-
sons between energy flux predictions from the variational approach and the purely diagnostic
TSM demonstrate that the relative accuracy of each approach is contingent on surface con-

ditions and the accuracy with which LAI values required by the TSM can be estimated.

Keywords: Data assimilation, Surface energy fluxes, Surface radiometric temperature, Tur-
bulent transfer coefficients.

1. Introduction

Accurate estimates of energy and momentum fluxes between the surface of
the earth and the atmospheric boundary layer are of critical importance for a
wide range of agricultural, hydrological, and meteorological applications.
Efforts to estimate the magnitude of surface fluxes are frequently frustrated
by large amounts of land surface heterogeneity and the need to obtain model
inputs at high spatial resolutions. These needs can likely be met only with
remote sensing. Consequently, a number of models have been developed to
estimate surface energy fluxes based on remote observations of the land
surface (see e.g., Norman et al., 1995; Bastiaansen et al., 1998; Jiang and
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Islam, 2001; Su, 2002). These approaches generally utilize surface radiometric
temperature (Ts) observations to solve the surface energy balance and par-
tition incoming radiation into various flux components. They are typically
diagnostic in nature and therefore make flux predictions only for instances in
which Ts observations are available. Obtaining reliable surface energy flux
predictions also requires knowledge of ancillary land surface parameters such
as the leaf area index (LAI), surface roughness, and the fractional coverage of
vegetation (fv) to accurately estimate near-surface resistance to the transfer of
momentum, energy, and water. These parameters are often estimated using
remotely observed visible and infrared spectral indices in order to minimize
the amount of in situ observations required by the energy balance algorithm.

In contrast to diagnostic approaches where surface radiometric temperature
is treated as a forcing variable, a number of recent approaches have instead
focused on the variational assimilation of Ts into a force-restore equation for
surface temperature (Castelli et al., 1999; Boni et al., 2000). These approaches
have a number of advantages over purely diagnostic approaches. Most
importantly, they provide flux estimates that are continuous in time and can
temporally interpolate, using a physically realistic force-restore prognostic
equation, between sparse Ts observations (Boni et al., 2001). In addition,
estimates of ground heat flux can be obtained using a physically based ap-
proach instead of relying on empirical formations that estimate ground heat
flux as a fixed fraction of net radiation. A third advantage for variational
assimilation-based techniques has recently been described by Caparrini et al.
(2003, 2004) who attempt to simultaneously retrieve both turbulent transfer
coefficients and daily-averaged evaporative fraction (EF ) magnitudes from Ts

observations.A simultaneous retrieval of both variables eliminates the need for
the a priori specification of surface roughness lengths to obtain transfer coef-
ficient estimates. To date, retrievability concerns have limited the approach to a
single-source geometry for surface radiative emission. In contrast, the disag-
gregation of surface emission into soil and vegetation components is often
viewed as a critical component of other models. Diagnostic approaches such as
the two-source energy balancemodel (TSM) (Norman et al., 1995) are based on
thedisaggregationofTs observations into soil and vegetative contributions and
the separate calculation of soil and canopy energy fluxes. This separation
eliminates the need to obtain bulk surface transfer coefficients that attempt to
aggregate across soil and vegetation surface components.

Currently, the most advanced operational approaches for regional-scale
energy flux monitoring are based on the application of TSM principles to
geostationary satellite Ts observations and the independent estimation of leaf
area index and surface roughness length (Diak et al., 2004). Because of its
reduced parameter requirements, the variational smoother approach of
Caparrini et al. (2003, 2004) offers an attractive alternative but has not been
extensively tested over a wide range of land surface conditions. The purpose
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of this study is to evaluate the approach of Caparrini et al. (2003, 2004)
during the growing season over a range of different land cover types within
the south-central and south-western U.S.A. Three aspects of the approach
will be examined: its ability to uniquely and unambiguously retrieve both
surface energy fluxes and turbulent transfer coefficients in a simultaneous
manner from a time series of Ts observations; the degree to which transfer
coefficients derived by the model can be physically interpreted; and the
accuracy of its energy flux predictions. The examination of model accuracy
and interpretability will be aided by comparison with flux tower observations
and TSM predictions at the same series of sites.

2. Energy Balance Models

Analysis is based on the variational smoother approach of Caparrini et al.
(2003, 2004) utilizing the force-restore equation for surface temperature
(VAR-FR) and the diagnostic TSM of Norman et al. (1995). Both models are
based on the remote observation of Ts and the surface energy balance
equation that describes the partitioning of incoming net radiation (Rn) into
latent energy (LE, L being the latent heat of vaporization and E the evap-
oration), sensible heating (H), and ground heat flux (G) components:

Rn ¼ LEþHþ G: ð1Þ
Details underlying both approaches are described below.

2.1. VARIATIONAL DATA ASSIMILATION APPROACH

As noted above, the VAR-FR approach is based on the use of a force-restore
equation to model the evolution of surface soil temperature (Ts) in response
to variations in radiative forcing (Rn �H� LE) occurring at a diurnal fre-
quency (x):

dTs

dt
¼ 2

ffiffiffiffiffiffiffi

px
p

P
½Rn �H� LE� � 2pxðTs � TdÞ; ð2Þ

where P is the thermal inertia of the land surface and Td the deep soil
temperature. The approach of Caparrini et al. (2003, 2004) rewrites (2) by
defining the evaporative fraction (EF) to be:

EF ¼
LE

LEþH
; ð3Þ

and utilizing a bulk transfer formulation for H where:

H ¼ qcpCHUðTs � TaÞ ð4Þ
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and Ta is the air temperature, U the wind speed, cp is the specific heat of air, q
the density of air, and CH the bulk transfer coefficient for heat. Stability
impacts on CH can then be described as a function of the bulk Richardson
number, RiB:

CH

ðCHÞN
¼ 1þ eWð1� e10RiBÞ; ð5Þ

where W is the static stability correction parameter and the neutral transfer
coefficient ðCHÞN is typically represented as:

ðCHÞN ¼
k2

lnðzref=z0mÞ ln ðzref=z0hÞ
ð6Þ

with k representing Van Karman’s constant, zref the measurement height for
wind, and z0m and z0h roughness lengths for momentum and heat transfer,
respectively.

Substracting one from both sides of (3) and solving for H þ LE leads to
Hþ LE ¼ H=ð1� EFÞ. Inserting this expression into (2) and expanding H
via (4) and (5) yields:

dTs

dt
¼2

ffiffiffiffiffiffiffi

px
p

P

�

Rn�
ðCHÞN
1�EF

½Ts�Ta�qcpU½1þeWð1�e10RiBÞ�
�

�2pxðTs�TdÞ:

ð7Þ

Variables P and W are considered to be non-time varying and set equal to
750 J m�2 K�1 s�1=2 and ln (2) respectively for all sites. While these values
are somewhat uncertain, off-line sensitivity results demonstrate the limited
sensitivity of EF results to variations in either parameter. The restoring
temperature Td is calculated by applying a semi-diurnal (12-h) filter to Ts

observations using a phase lag of 2 h. Values for Rn, U, RiB, and Ta are taken
from micrometeorological observations and the definition of the bulk
Richardson number:

RiB ¼
g

h
Dhzref
U2

; ð8Þ

where g is the gravitational constant, h the potential temperature of the air,
and Dh the air/surface potential temperature difference. In this study Ts

observations are derived from a ground-based infrared radiative thermom-
eter. However, the expectation is that satellite measurements will eventually
be utilized. The VAR-FR model is a single-source model in the sense that
contributions from soil background to Ts observations are neglected and
observations of Ts are directly inserted into (4).

Given a times series of daytime Ts observations, Caparrini et al. (2003,
2004) describe a variational data assimilation system (VAR-FR) capable of
simultaneously retrieving estimates of both ðCHÞN and EF. The variational
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problem is solved by obtaining an adjoint state model for (7) and utilizing the
model to efficiently search for values of ðCHÞN and EF that minimize the
root-mean-squared difference between predictions of Ts obtained via (7) and
Ts observations (Castelli et al., 1999). The approach is applied over discrete
(multi-day) time periods within which EF is allowed to vary daily and ðCHÞN
is held constant. Due to the self-preservation properties of EF (Crago and
Brutsaert, 1996), diurnal variation in EF is assumed small and neglected. In
order to eliminate the possibility of negative ðCHÞN retrievals, Caparrini et al.
(2003, 2004) solve for the transformed parameter R defined to be:

ðCHÞN ¼ eR: ð9Þ

The VAR-FR also requires an a priori specification of physically realistic
limits for EF. Also otherwise noted, a range of between 0.1 and 0.9 is used.

2.2. THE TWO-SOURCE MODEL

A detailed description of the original TSM can be found in Norman et al.
(1995). The modelling approach evaluates the temperature contribution of the
vegetated canopy layer and soil/substrate to the radiometric surface temper-
ature observation, and the resulting turbulent heat flux contributions driven
by surface–air temperature differences with aerodynamic resistance parame-
terizations for the vegetation and soil components. This modelling strategy
follows the conceptual two-source framework proposed by Shuttleworth and
Wallace (1985) for partially vegetated surfaces (see also Shuttleworth and
Gurney, 1990).

There have been several modifications to the original TSM formulation
that can significantly influence flux predictions for partial canopy covered
surfaces. These include estimating the divergence of net radiation through the
canopy layer with a more physically based algorithm, adding a simple method
to address the effects of clumped vegetation on radiation divergence and wind
speed inside the canopy layer, adjusting the magnitude of the Priestley–Taylor
(Priestley and Taylor, 1972) coefficient used in estimating canopy transpira-
tion, and formulating a new estimation for soil resistance to sensible heat-flux
transfer (Kustas and Norman, 1999a, b; 2000a, b).

The TSM and VAR-FR approaches present a number of key differences.
The TSM approach uses Ts as a forcing variable to solve a diagnostic set of
equations that considers the impact of thermal emission from both the
canopy and soil. For the 4-h period on either side of solar noon, the TSM
model assumes ground heat-flux fraction (GF) to be a function of LAI, Rn,
and solar zenith angle hs (Norman et al., 1995; Anderson et al., 1997):

GF ¼ G=Rn ¼ cgexp
�

� jLAI=
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2coshs
p

�

: ð10Þ
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Following Kustas et al. (1998), cg is typically assumed to be 0.35 and the
extinction coefficient j set to 0.6. Since GF is modelled as a simple function of
LAI and canopy heat storages are neglected, the TSM does not require the
forward temporal integration of any thermal state. Flux calculations are
made based solely on instantaneous micrometeorological observations, plus
vegetation structure and Ts. The roughness length for momentum is taken to
be one-eighth of plant canopy height. Accurate LAI estimates for the vege-
tation canopy must be independently obtained in order to calculate the rel-
ative contribution of vegetative and soil sources to Ts observations, the net
radiation partitioning between the vegetation canopy and soil, and the
aerodynamic resistance to momentum transfer within the canopy.

In contrast, the VAR-FR attempts to solve for the heat transfer coefficient
and surface energy fluxes (including G) by assimilating Ts observations into a
prognostic force-restore equation for canopy temperature (7). Unlike the
TSM, memory of past thermal states is retained in the deep temperature state
Td. However, as a single-source approach, it neglects the impact of back-
ground soil emission on Ts observations.

3. Study Locations and Data

Site locations, surface conditions, and dates are listed in Table I; measure-
ments of surface energy fluxes, micrometeorological quantities, and surface
radiometric temperature are available at all sites. Data at the MONSOON1
and MONSOON5 sites were collected as part of the MONSOON’90 field
experiment (Kustas and Goodrich, 1994) in the U.S. Department of Agri-
culture Agricultural Research Service’s Walnut Gulch experimental wa-
tershed near Tombstone, Arizona. The LW site was maintained as a long-term

TABLE I

Study site characteristics.

Site Lat/long Julian days Year Land cover NDVI EF

ELRENO1 35.54/)98.02 175–195 1997 Pasture 0.61 0.83

ELRENO13 35.56/)98.06 171–195 1997 Bare soil 0.00 0.50

MONSOON1 31.74/�110.05 209–222 1990 Sparse shrubs 0.20 0.55

MONSOON5 31.73/�109.94 210–221 1990 Sparse grass 0.35 0.60

FIFE 39.00/�96.50 169–194(wet) 1987 Native prairie 0.70 0.86

194–219(dry) 1987 Native prairie 0.61 0.65

LW 36.60/�97.48 149–188(wet) 1997 Range 0.30 0.53

188–228(dry) 1997 Range 0.30 0.43
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energy flux study site between 1996 and 1998 by the National Oceanic and
Atmospheric Administration/Atmospheric Turbulence and Diffusion Divi-
sion within the Little Washita (LW) river basin in south-central Oklahoma.
The ELRENO1 and ELRENO13 sites in the vicinity of El Reno, Oklahoma
were instrumented as part of the 1997 Southern Great Plains Hydrology
Experiment. Site details can be found in Hollinger andDaughtry (1999) and in
SGP’97 documentation accessible online at http://hydrolab.arsusda.gov/
sgp97/documents.html

Data collected at the MONSOON, LW, and ELRENO sites are based on
observations made on single flux towers. In contrast, data for the First
International Satellite Land Surface Climatology Project (ISLCP) Field
Experiment (FIFE) site are based on the areal average of several flux towers
within the 152-km2 FIFE study site (Sellers et al., 1992) in eastern Kansas.
Acquisition, processing, and spatial averaging of the FIFE dataset is detailed
in Betts and Ball (1998). Flux observations at the MONSOON sites had
previously been modified to ensure energy balance by solving for LE as a
residual (Kustas et al., 1994). At the ELRENO and LW sites, raw flux
observations were considered only from days exhibiting a daytime closure
ratio, (LEþHÞ=ðRn � G), greater than 0.75.

Within the south-central and south-western U.S.A., middle to late parts of
the growing season (June to August) typically exhibit the most complex
temporal interaction between periods of energy- and water-controlled
evapotranspiration, the most profound impact of water stress on vegetation
health and productivity, and the strongest contrasts between soil and vege-
tation temperatures. As a consequence, prediction of surface energy fluxes
based on Ts observations during this period is both difficult and highly rel-
evant for agricultural and land management applications. In our analysis, site
locations and times were selected to capture the full range of growing season
hydrologic and vegetation conditions typically encountered in the region.
Normalized difference vegetation index (NDVI) values at the sites range from
essentially zero at the bare soil ELRENO13 site to 0.70 at the FIFE site.
Average daytime EF observations range between 0.43 for arid conditions
encountered at the rangeland LW site to 0.86 for observations collected
during a wet period at the native prairie FIFE site. Measurements of day-
time-averaged (1000–1600 CST) turbulent energy fluxes range between 100
and 400 W m�2 for H and 100 and 500 W m�2 for LE.

4. Results

A fundamental concern about application of variational techniques to any
geophysical problem is whether the approach is capable of making unam-
biguous and physically interpretable predictions of variables. If so, then a
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secondary question arises as to how accurate these retrievals are relative to
independent measurements and competing approaches. To this end, the
approach of Caparrini et al. (2003, 2004) was evaluated at sites listed in
Table I based on its ability to simultaneously retrieve both EF and ðCHÞN
(Section 4.1), the physical interpretability of its ðCHÞN predictions (Section
4.2), and its ability to accurately estimate EF (Section 4.3). Accuracy
comparisons for EF retrievals were made relative to both independent flux
tower observations as well as comparable TSM predictions obtained at the
same series of sites. All comparisons to measurements were made based on
daytime-averaged (1000–1600 local time) energy flux values.

4.1. SIMULTANEOUS RETRIEVAL OF EF AND ðCHÞN

Using the adjoint-based variational data assimilation strategy of Caparrini
et al. (2003, 2004) (VAR-FR), EF and R predictions were calculated at each of
sites listed in Table I. Based on optimization against a time series of Ts

observations, the VAR-FR algorithm provides output for a separate EF value
for each day in the assimilation period and a singleR prediction that defines the
heat transfer coefficient for the entire period. Averaging daily EF predictions
within a given assimilation yields the period averaged evaporative fraction
(EF). Figure 1 plots iterative (EF) and R values obtained as the adjoint-based
variational approach searches for a minimum at the MONSOON1 site, and
Figure 2 shows the minimization of Ts root-mean-square-error (RMSE) as a
function of iteration number for the four initial conditions shown in Figure 1a.
Initial conditions were arbitrarily selected to span a range of possible land
surface conditions. The VAR-FR system converges to a relatively flat valley
after 1000 iterations (Figures 2c and 3), which expresses a trade-off between
cooling of the surface via turbulent transfer and evapotranspiration. Highly
negative R values imply smooth surfaces and vigorous evapotranspiration.
Larger (less negative) R values imply rougher surfaces with increased reliance
on turbulent heat transfer for cooling. Convergence beyond iteration number
1000 (approximately) is extremely slow (Figure 1d) and associated with
essentially negligible variations in Ts RMSE (Figure 2). Each of the four con-
vergence pathways in Figure 2 is likely to satisfy any reasonable convergence
criterion before iteration number 2500. Nevertheless, large differences inR and
EF retrievals persist betweenpathways beyond5000 iterations (Figure 1d). This
suggests that optimized R and EF values will vary as a function of initial con-
ditions (Figure 1a) unless extremely strict convergence criterion is utilized.

In order to overcome convergence problems associated with the simulta-
neous optimization of both R and EF, the approach of Caparrini et al. (2003,
2004) was modified so that EF values were separately optimized for a range of
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fixed R values. Optimization yields a time series of EF predictions associated
with the best fit to observed Ts values for a fixed value of R. In this case,
convergence was good after 100 iterations of the algorithm. Figure 3a plots
the temporal average of EF values (EF) required to minimize the model Ts

error over a range of R values at four sites listed in Table I: ELRENO13,
LW(dry), MONSOON1, and FIFE(wet). Figure 3b shows Ts RMSE differ-
ences between observed and modelled Ts for the same range of R. The
simultaneous retrieval of both EF and R requires the presence of well-defined
minima in Ts RMSE to allow for the unambiguous specification of R values.
However, observed Ts minima at the LW(dry) and FIFE(wet) sites are
shallow with respect to variations in R (Figure 3b) and lend uncertainty to
optimized R values. This ambiguity can have major impacts on the sub-
sequent accuracy of EF predictions (Figure 3c). For instance, during the
LW(dry) period, R values between �6.25 and �5.25 produce essentially the
same fit to Ts observations yet lead to EF RMSE that vary between 0.1 and
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Figure 1. Iterative evolution R and EF retrivals by the VAR-FR approach at the MON-

SOON1 site. Initial conditions for the iterative solver are indicated with open circles.
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0.3. At the FIFE(wet) site, very good fits to both Ts and EF observations are
associated with an R value near �4.5. However, larger (less negative) values
of R produce essentially identical fits to Ts observations and are associated
with a poorer EF accuracy. At both sites, Ts observations do not unambig-
uously identify R values associated with accurate EF predictions. This lack of
identifiability is the ultimate source of convergence problems encountered
when R and EF are simultaneously optimized (Figures 1 and 2).

Some amount of additional land surface information appears necessary to
unambiguously retrieve both EF and R at these sites. This information need
not be detailed to offer substantial improvement. For instance, following
Garratt and Hicks (1973) and assuming ln ðz0m=z0hÞ � 2 in (6), a z0m value of
0.5 m corresponds to an R value of �4.2 at the native prairie FIFE site. Such
a roughness length is significantly larger than the 0.01–0.03 m range esti-
mated from micrometeorological observations at the same site (Verma et al.,
1992) and can be rejected as physically unrealistic given even cursory
knowledge of FIFE land cover conditions. Nevertheless, limiting R retrievals
to R > �4.2 substantially improves VAR-FR EF predictions at the site (EF

RMSE of 0.10 versus 0.30).

4.1.1. Role of EF Variability
Figure 4 examines this retrievability issue in detail at the MONSOON1 site.
The force-restore equation for surface temperature, (7), predicts that, for
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Figure 2. Decrease in Ts RMSE as a function of VAR-FR iteration number for the four initial
conditions shown in Figure 1.
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similar meteorological and Rn conditions, changes in ðCHÞN and EF will
produce identical Ts temporal variations provided the ratio ðCHÞN/ð1� EFÞ
is conserved. As a consequence, an optimal value of this ratio can be
maintained for any pre-specified value of ðCHÞN via the appropriate adjust-
ment of EF. Figure 4a plots the average of ðCHÞN/ð1� EFÞ within the
assimilation period, ðCHÞN/ð1� EFÞ, for a range of pre-specified R values. In
the vicinity of the observed Ts RMSE minimum (see Figure 4b), the VAR-FR
algorithm compensates for changes in ðCHÞN by adjusting EF (Figure 4c) and
maintaining nearly optimal ðCHÞN/ð1� EFÞ levels. Values of ðCHÞN/ð1� EFÞ
deviate significantly from optimal levels only when EF values required for
optimal fitting to Ts observations fall outside the pre-specified EF bounds. In
this case, the data assimilation system is forced to truncate EF retrievals and
is prevented from obtaining an optimal fit to Ts observations (Figure 4b). If
EF values are prevented from becoming optimally large (small), model Ts

predictions become too high (low) and ðCHÞN values can be rejected based on
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Figure 3. Values of (a) EF, (b) Ts RMSE, and (c) EF RMSE associated with the best fit to Ts

observations found by the VAR-FR algorithm for a range of pre-specified values of R.
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their inability to match Ts observations (Figure 4d). The larger the range of
EF deemed acceptable, however, the more latitude the variational approach
has to adjust EF with impunity and the shallower the Ts RMSE minimum.
Consequently, the simultaneous retrieval of ðCHÞN and EF is dependent on
the a priori restriction of EF to a certain bounded range. These bounds should
reflect knowledge of a site’s vegetation and climatic characteristics. For in-
stance, dense vegetation at the FIFE site virtually guarantees an EF value
above 0.5. Consequently, restricting the EF range to between 0.5 and 0.9 (as
opposed to between 0.1 and 0.9), substantially improves the retrievability of
ðCHÞN at the FIFE(wet) site and reduces EF RMSE by 50% (0.29 to 0.15). In
contrast, restricting EF predictions to a lower range, say between 0.3 and 0.7,
is inconsistent with the site’s vegetation and climatic characteristics and does
not lower the EF RMSE (0.30 versus 0.29).
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(d) Ts associated with the best fit to Ts observations found by the VAR-FR algorithm for a
range of pre-specified values for R and different EF retrieval bounds.
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Since EF is simply an averaged value obtained within the entire assimi-
lation period, deviations from the optimal ðCHÞN/ð1� EFÞ level occur be-
fore temporally averaged EF values approach these limits (Figure 4d).
Extreme EF conditions within the assimilation period encroach upon fea-
sible EF bounds and provide instances in which good Ts fits cannot be
accommodated for certain values of ðCHÞN without resorting to physically
unrealistic EF values. The presence of variability within the assimilation
period, and/or more tightly bounded ranges for realistic EF values, en-
hances retrievability by presenting cases where extreme values of EF are
required to match Ts observations. If these values fall outside of the
physically realistic bounds for EF, specific values of ðCHÞN can be labeled as
non-optimal. Retrievability can also be enhanced by employing longer
assimilation windows that encompasses greater EF variability within the
assimilation period.

4.1.2. Role of Land Surface Conditions
Figure 5 plots values for ðCHÞN/ð1� EFÞ that lead to Ts RMSE minima at
each site; results for all eight sites are plotted in order of decreasing NDVI
values for Table I. Large variations are observed between sites. The magni-
tude of this ratio, along with P, determines the vigour of diurnal variations in
Ts due to the periodic radiative forcing of the land surface. High (low)
ðCHÞN/ð1� EFÞ fractions are typical of wet and highly vegetated (dry and
sparsely vegetated) sites where diurnal Ts dynamics are (pronounced)
damped. Setting an optimal value of this fraction equal to some constant K,
solving for EF, and taking the derivative of EF with respect to ðCHÞN yields:

dEF

dðCHÞN
¼ �K�1: ð11Þ

A highly negative dEF/dðCHÞN (i.e. a small optimal ðCHÞN/ð1� EFÞ value)
dictates that large variations in ðCHÞN will require analogously large
adjustments in EF to minimize Ts RMSE. Consequently, a large variation in
ðCHÞN cannot be accommodated without exceeding pre-set EF bounds. This
inflexibility enhances the retrievability of ðCHÞN. This is typically the case
with dry and sparsely vegetated sites given in Table I and Figure 5 that
exhibit low ðCHÞN/ð1� EFÞ and, by (11), highly negative dEF/dðCHÞN. Note
the poor retrievability in Figure 3 for the heavily vegetated FIFE site during a
wet period relative to the lightly vegetated and drier ELRENO13 and
MONSOON1 sites.

4.1.3. Diagnostics for Retrievability
Results in Sections 4.1.1 and 4.1.2 suggest the potential of two simple
diagnostics to evaluate the potential of the Caparrini et al. (2003, 2004)
approach at a given site. The averaged magnitude of Ts � Ta provides a
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measure of land surface cooling efficiency and the magnitude of ðCHÞN/
(1� EFÞ values required to match Ts observations. Smaller optimal values of
ðCHÞN/(1� EFÞ dictate more highly negative dEF/dðCHÞN values and less
pronounced Ts minima. Likewise, since ðCHÞN is constant within assimilation
periods, variations in Ts � Ta manifest themselves as day-to-day variability in
EF. Larger variability in EF, in turn, reduces the range of ðCHÞN values that
yields EF predictions within physically realistic ranges. For Figure 6, the
sharpness of the Ts minimum at all eight sites listed in Table I was defined as
the absolute range of ðCHÞN values whose Ts RMSE is within 0.2 K of the
global Ts RMSE minimum. Each site is ranked according to this sharpness
measure. The size of the circles in Figure 6 reflects this ranking, with larger
circles assigned to sites with well-defined Ts RMSE minimum. Circles are
positioned in the plot according to mean daytime Ts � Ta and the magnitude
of day-to-day variations in daytime-averaged Ts� Ta. There exists a ten-
dency for sites with higher mean Ts � Ta and greater Ts� Ta variability to
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enjoy sharper Ts RMSE minima and improved prospects for the simulta-
neous retrieval of both ðCHÞN and EF. Since Ts and Ta observations represent
the key drivers for VAR-FR model predictions, these two diagnostics (the
mean and standard deviation of Ts � Ta) appear to drive site-to-site varia-
tions in the retrievability of ðCHÞN.

4.2. PHYSICAL INTERPRETABILITY OF ðCHÞN RETRIEVALS

A well-known drawback for one-source energy balance approaches is the
non-equivalence of the aerodynamic and radiative temperatures, the latter
being strongly influenced by the areal fraction of bare soil viewed by the
radiometer (Kustas et al., 2004). Direct measurement of both soil (Tsoil)
and vegetation (Tveg) surface radiometric temperatures at the MONSOON1
and MONSOON5 sites provides an opportunity to study partial vegetation
impacts on VAR-FR ðCHÞN retrievals. Viewing of the surface at different
‘look’ angles leads to variations in the fraction of observed thermal
emission originating from the canopy (fv) and variations in the relative
weighting of soil and vegetation sources underlying remote Ts observations.
Assuming equal emissivities for vegetation and soil, the radiometric
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temperature Ts can be related to Tsoil, Tveg, and fv via the following
approximate relationship:

Ts � ½fsT4
veg þ ð1� fsÞT4

soil�
0:25; ð12Þ

where fv varies as a function of both observation ‘look’ angle and LAI.
Using (12), a series of Ts time series were constructed from Tsoil and Tveg

measurements assuming various values of fv. Figure 7 describes the impact
of variations in fv, due ostensibly to changes in view ‘look’ angle, on
VAR-FR EF and ðCHÞN retrievals at the MONSOON1 site. Viewing
partially vegetated surfaces from increasingly high zenith angles (i.e.
increasingly further from nadir) leads to increased weighting of vegetation
thermal emission and a reduction in the near-surface Ts � Ta value driving
turbulent energy fluxes. This cooling increases the magnitude of ðCHÞN/
ð1� EFÞ required to match Ts observations. Due to temporal EF vari-
ability at the MONSOON1 site that spans the range of physically realistic
EF values, increases in ðCHÞN/ð1� EFÞ are most easily accomplished by
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raising ðCHÞN values. These changes are at odds with the formal definition
of ðCHÞN in (6) and suggest that values of ðCHÞN retrieved by the one-
source VAR-FR approach actually constitute effective transfer parameters,
which reflect, in part, viewing geometry and the impact of background soil
temperature. In contrast, variations in fv have relatively little impact on
EF retrievals.

The impact of bare soil emission on ðCHÞN retrievals over partially vege-
tated canopies is also evident in Figure 5b. Note that lower ðCHÞN (i.e.
smoother aerodynamic conditions) are required to match Ts observations for
the shrub and grassland MONSOON sites versus the bare soil ELRENO13
site. This runs counter to expectations concerning the aerodynamic rough-
ness at both sites, and most likely reflects the need for anomalously low
ðCHÞN values to blunt the impact of very high background soil temperatures
at the MONSOON sites.

Irregardless of the physical interpretation for retrieved ðCHÞN values, the
VAR-FR approach will return accurate energy flux values if transfer coeffi-
cients match effective values of ðCHÞN that minimize EF error. Figure 8
demonstrates that, with the exception of a very pronounced low bias at high
ðCHÞN, fitting to Ts values does a relatively good job at recovering ðCHÞN
values that minimize EF RMSE.
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values found within 0.2 K of the Ts RMSE minimum.
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4.3. ACCURACY OF EF AND GF RETRIEVALS

Since Rn values are measured and energy balance assumed, flux results for the
VAR-FR approach can be completely described with the normalized frac-
tions EF, defined in (3), and GF, defined in (10). Figures 9 and 10 show
daytime averaged EF and GF predictions made by the VAR-FR method for
each study period/site listed in Table I. Dotted lines reflect the spread in EF

and GF results introduced by considering all R values within 0.2 K of the
minimum Ts RMSE, and open circles are flux tower observations. Uncer-
tainty associated with poorly defined Ts minima introduces a significant level
of uncertainty into the evaluation of VAR-FR EF predictions. For instance,
VAR-FR results for LW(DRY) demonstrate a good fit to EF observations
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for the ðCHÞN value associated with the best fit to Ts observations (solid line
in Figure 9), however essentially identical fits to Ts observations (dotted lines
in Figure 9) can produce widely varying, and much worse, EF predictions.
The opposite is true at the FIFE(WET) site where the best fit is associated
with low EF accuracy, but alternative ðCHÞN values, with only a slightly
worse fit to Ts, lead to very good EF retrieval accuracy (see top dotted line in
Figure 9 for FIFE(WET)). VAR-FR GF results are generally more robust to
the impact of ðCHÞN uncertainty (note the smaller spread of dotted lines in
Figure 10 versus Figure 9) and clearly reveal a low bias when compared to
flux tower observations.

Comparison of results in Figures 9 and 10 to competing TSM predictions
offers an important perspective on VAR-FR results. Intercomparisons
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between competing models should reflect underlying differences in model
complexity. An attractive characteristic of the VAR-FR model is that it is a
parsimonious approach that, in theory, requires little or no ancillary infor-
mation concerning surface conditions. In contrast, the TSM requires inde-
pendent estimates of vegetation LAI. These values are often estimated as a
function of remote NDVI observations (Choudhury, 1987; Choudhury et al.,
1994):

LAI ¼
1

�j
ln

NDVImax �NDVI

NDVImax �NDVImin

� �

; ð13Þ

where j is assumed to be 0.8 and NDVImin (NDVI of bare soil) to be 0.00.
NDVImax (NDVI at 100% vegetation cover) values were assumed equal to
0.65 at the LW and ELRENO sites (French et al., 2003), 0.75 at the FIFE
site, and 0.60 at the MONSOON sites. The roughness length for momentum
transfer was taken to be one-eighth of the observed vegetation height at each
site. LAI estimates from (13) were used to calculate GF at each site via (10)
and fv values used to partition Ts between soil and vegetation sources via
(12). Consequently, meaningful comparisons between the TSM and VAR-FR
approaches should reflect the ease in which accurate LAI estimates can be
obtained from available remote sensing observations. Figures 11 and 12 show
EF and GF RMSE results for TSM predictions utilizing a range of LAI values.
Horizontal lines represent RMSE for comparable VAR-FR retrievals at each
site. Dashed vertical lines represent estimates of LAI obtained from satellite-
derived NDVI observations listed in Table I and from Equation (13).

Irregardless of the LAI choice, TSM EF predictions (Figure 11) are supe-
rior for wet and heavily vegetated conditions at the ELRENO1 and
FIFE(WET) sites. Conversely, VAR-FR EF predictions are superior for the
bare soil ELRENO13 site and dry conditions at the LW site. Using LAI

values derived from Table I and from (13) leads to slightly superior TSM
results at the MONSOON5, FIFE(DRY), and LW(WET) sites and similar
results at the MONSOON1 site. However, large uncertainty associated with
VAR-FR EF predictions (see Figure 9) makes unambiguous EF intercom-
parisons impossible. Owing to a reduced uncertainty in VAR-FR results for
GF, intercomparison results for GF retrievals in Figure 12 can be made with
more certainty. Except for the LW site, where optimal LAI values are
underestimated by NDVI observations and (13), RMSE GF results in Figure
12 reveal a tendency for the empirical TSM approach (10) to outperform the
VAR-FR model.

Actual turbulent energy fluxes are plotted in Figure 13, where TSM pre-
dictions are based on LAI estimates derived from (13). The overestimation of
latent heat flux (LE) by the TSM at the ELENO1 site could be exacerbated
by energy closure issues, resulting in the underestimation of LE by flux tower
observations at the site (Twine et al., 2000). The underestimation of EF by the
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VAR-FR model at the ELRENO1, LW(WET), and FIFE(WET) sites (see
Figure 9) manifests itself primarily through the overestimation of H. The
VAR-FR approach also tends to overestimate both H and LE at the
MONSOON sites owing to the underestimation of GF at these sites.

5. Summary and Conclusions

The analysis in Section 4 demonstrates the promise, and potential limita-
tions, of utilizing surface radiometric temperature observations (Ts) and
variational data assimilation to simultaneously retrieve both surface evap-
orative fraction (EF) and turbulent transfer coefficients (ðCHÞN or eR). The
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key limitation of the VAR-FR approach presented by Caparrini et al.
(2003, 2004) is its tendency to be ill-posed for certain land cover types. At
these sites, a continuum of R and EF possibilities exists that produces
essentially identical Ts RMSE fitness in model predictions (Figures 1–3).
Minima in Ts RMSE can be sufficiently shallow such that large changes in
R (and EF) induce only negligible variations in Ts RMSE (Figures 3b and
c). Retrievability problems are the most pronounced for sites exhibiting
small and non-variable Ts � Ta differences (Figure 5), a tendency typically
associated with densely vegetated and wet surfaces. Unless addressed,
retrievability problems for these surfaces will make VAR-FR predictions
sensitive to even small random perturbations in Ts measurements and
prevent the robust retrieval of surface energy fluxes.
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The VAR-FR approach also suffers from generic limitations impacting all
single-source energy balance approaches over partially vegetated canopies.
Results in Figure 7 demonstrate the sensitivity of VAR-FR R retrievals to
variations in fractional vegetation coverage – due ostensibly to look angle
changes – at the sparsely vegetated MONSOON1 site. The dependence of R
on vegetation coverage fraction is not reflected in its physical definition and
will complicate efforts to physically interpret results and/or constrain
parameters within physically realistic ranges. Despite ambiguities in the
physical definition of R, values retrieved by minimizing Ts RMSE predict R
values that minimize the EF error (Figure 8) reasonably well. That is, there is
a tendency for Ts RMSE minima in Figure 3b to correspond to EF RMSE
minima in Figure 3c. In addition, VAR-FR EF predictions, at least at the
MONSOON1 site, are surprisingly robust to variations in vegetation cov-
erage fraction. The impact of look angle variations is generally confined to
altering R retrievals (Figure 7).
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Results in Figures 11 and 12 provide a sense as to how accuratelyLAI values
must be estimated in order for the more physically complex TSM to outper-
form the more parsimonious VAR-FR approach. For EF, using estimated LAI

values estimated from remote NDVI observations, the TSM significantly
outperforms the VAR-FR approach over wet and heavily vegetated sites (e.g.
ELRENO1 and FIFE(wet)), and does slightly better for partially vegetated
conditions at the MONSOON5 site and LW(WET) case. In contrast, VAR-
FR EF predictions appear more accurate for the bare soil site (ELRENO13)
and dry conditions at the LW site. However, the residual uncertainty con-
cerning the true location of Ts RMSE minima in Figure 4, and therefore
VAR-FR EF predictions, complicates efforts to unambiguously rank the ap-
proaches. Relative to VAR-GR EF predictions, uncertainty surrounding true
Ts minima imparts much less uncertainty on VAR-FR GF predictions (Figure
10). Nonetheless, results in Figure 12 provide no evidence that the more
physically basedGF calculations made by the VAR-FR approach are superior
to the empirical formulation used by the TSM.

Taken as a whole, VAR-FR results point towards the need for ancillary
land cover information to guarantee a well-posed inversion problem and the
robust prediction of surface energy fluxes results by the VAR-FR approach.
Surface temperature observations alone are not sufficient to unambiguously
constrain both EF and R over partial and heavily vegetated surfaces. How-
ever, it is possible that simple and relatively robust ad hoc rules concerning
‘reasonable’ EF and R conditions for various land surfaces may offer sub-
stantial improvement. One possibility is tighter constraints on the range of
EF values deemed physically realistic at a given site. Figure 4 demonstrates
the benefits for R retrievability of constraining EF predictions within smaller
ranges. Another possibility is the specification of physically realistic ranges
for R, and thus surface roughness, for various land cover types (Section 4.1).
Future research should be orientated towards addressing this need.
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